INTEGRAIS, SOMAS E SÉRIES DE GRACELI.
séries e integrais de Graceli.
Esta lista de séries matemáticas contém fórmulas para somas finitas e infinitas. Ela pode ser usada em conjunto com outras ferramentas para avaliar somas.
-S / PW
pg

Gn [px] = an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =

T [t] = ao / pk +

[an . cos [nst pk] / L + bn . SEN [nst] / L pk =

T [t] = ao / pk 1/
Gn [k[pr]

ph]+

[an . cos [nst pk] 1/
Gn [k[pr]

ph] / L + bn . SEN [nst] / L pk 1/
Gn [k[pr]

ph]=
pn pn

f pw [x] =

f[pw] px =
pn pn

f pw [x] =

f[pw] px cos x =

f [x] =

an [x - a] pk

f [x] =

an [x - a] pk [an . cos [nst pk] / L + bn . SEN [nst] / L pk =
,

S m,n =

a [pi] [pj] COS X=

1 / Gn =

s [PK] A [PK] + B / C [PW]. =

1 / Gn =

s [PK] A [PK] + B / C [PW]. COS X. =
[-PK]

y =

Y [PK] [PZ] =
[-PK]

y =

Y [PK] [PZ] COS X =

f[s] =

an [pk] / n [pw] =

f[s] =

an [pk] / n [pw] cos x=

S =

1 / n [pk] =

S =

1 / n [pk] cos x =
-s

S =

1 / n [pk] cos x =

S m,n =

a [pi] [pj] cos x =
[pn] / pw


T =
[pn] / pw


T cos x =
-S / PW
pg


Gn [px] =

an cos[-1/

]f[Gn]=


+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg

Gn

[px] = an

PW cos[-1/

]f[Gn]=


PW+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg

Gn

[px] =

PW an cos[-1/

]f[Gn]=


PW +bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg

Gn
[px] =
an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg

Gn [px] = an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg

Gn

[px] =

an cos[-1/

]f[Gn]=


+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg

Gn

[px] =

an cos[-1/

]f[Gn]=


/ PW +bn sen 1/
Gn [k[pr]

ph] =
Comentários
Postar um comentário