INTEGRAIS, SOMAS E SÉRIES DE GRACELI.
séries e integrais de Graceli.
Esta lista de séries matemáticas contém fórmulas para somas finitas e infinitas. Ela pode ser usada em conjunto com outras ferramentas para avaliar somas.
-S / PW
pg
Gn [px] = an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =
T [t] = ao / pk +

[an . cos [nst pk] / L + bn . SEN [nst] / L pk =
T [t] = ao / pk 1/
Gn [k[pr]

ph]+

[an . cos [nst pk] 1/
Gn [k[pr]

ph] / L + bn . SEN [nst] / L pk 1/
Gn [k[pr]

ph]=
pn pn
f pw [x] =

f[pw] px =
pn pn
f pw [x] =

f[pw] px cos x =
f [x] =

an [x - a] pk
f [x] =

an [x - a] pk [an . cos [nst pk] / L + bn . SEN [nst] / L pk =
,
S m,n =

a [pi] [pj] COS X=
1 / Gn =

s [PK] A [PK] + B / C [PW]. =
1 / Gn =

s [PK] A [PK] + B / C [PW]. COS X. =
[-PK]
y =

Y [PK] [PZ] =
[-PK]
y =

Y [PK] [PZ] COS X =
f[s] =

an [pk] / n [pw] =
f[s] =

an [pk] / n [pw] cos x=
S =

1 / n [pk] =
S =

1 / n [pk] cos x =
-s
S =

1 / n [pk] cos x =
S m,n =

a [pi] [pj] cos x =
[pn] / pw

T =
[pn] / pw

T cos x =
-S / PW
pg

Gn [px] =

an cos[-1/

]f[Gn]=


+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg
Gn

[px] = an

PW cos[-1/

]f[Gn]=


PW+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg
Gn

[px] =

PW an cos[-1/

]f[Gn]=


PW +bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg
Gn
[px] =
an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg
Gn [px] = an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg
Gn

[px] =

an cos[-1/

]f[Gn]=


+bn sen 1/
Gn [k[pr]

ph] =
-S / PW
pg
Gn

[px] =

an cos[-1/

]f[Gn]=


/ PW +bn sen 1/
Gn [k[pr]

ph] =
Comentários
Postar um comentário